22 research outputs found

    Strong Scaling of Matrix Multiplication Algorithms and Memory-Independent Communication Lower Bounds

    Full text link
    A parallel algorithm has perfect strong scaling if its running time on P processors is linear in 1/P, including all communication costs. Distributed-memory parallel algorithms for matrix multiplication with perfect strong scaling have only recently been found. One is based on classical matrix multiplication (Solomonik and Demmel, 2011), and one is based on Strassen's fast matrix multiplication (Ballard, Demmel, Holtz, Lipshitz, and Schwartz, 2012). Both algorithms scale perfectly, but only up to some number of processors where the inter-processor communication no longer scales. We obtain a memory-independent communication cost lower bound on classical and Strassen-based distributed-memory matrix multiplication algorithms. These bounds imply that no classical or Strassen-based parallel matrix multiplication algorithm can strongly scale perfectly beyond the ranges already attained by the two parallel algorithms mentioned above. The memory-independent bounds and the strong scaling bounds generalize to other algorithms.Comment: 4 pages, 1 figur

    Improving the numerical stability of fast matrix multiplication

    Full text link
    Fast algorithms for matrix multiplication, namely those that perform asymptotically fewer scalar operations than the classical algorithm, have been considered primarily of theoretical interest. Apart from Strassen's original algorithm, few fast algorithms have been efficiently implemented or used in practical applications. However, there exist many practical alternatives to Strassen's algorithm with varying performance and numerical properties. Fast algorithms are known to be numerically stable, but because their error bounds are slightly weaker than the classical algorithm, they are not used even in cases where they provide a performance benefit. We argue in this paper that the numerical sacrifice of fast algorithms, particularly for the typical use cases of practical algorithms, is not prohibitive, and we explore ways to improve the accuracy both theoretically and empirically. The numerical accuracy of fast matrix multiplication depends on properties of the algorithm and of the input matrices, and we consider both contributions independently. We generalize and tighten previous error analyses of fast algorithms and compare their properties. We discuss algorithmic techniques for improving the error guarantees from two perspectives: manipulating the algorithms, and reducing input anomalies by various forms of diagonal scaling. Finally, we benchmark performance and demonstrate our improved numerical accuracy

    Parallelizing Gaussian Process Calculations in R

    Get PDF
    We consider parallel computation for Gaussian process calculations to overcome computational and memory constraints on the size of datasets that can be analyzed. Using a hybrid parallelization approach that uses both threading (shared memory) and message-passing (distributed memory), we implement the core linear algebra operations used in spatial statistics and Gaussian process regression in an R package called bigGP that relies on C and MPI. The approach divides the covariance matrix into blocks such that the computational load is balanced across processes while communication between processes is limited. The package provides an API enabling R programmers to implement Gaussian process-based methods by using the distributed linear algebra operations without any C or MPI coding. We illustrate the approach and software by analyzing an astrophysics dataset with n = 67, 275 observations

    Communication-optimal parallel algorithm for strassen's matrix multiplication

    No full text
    Parallel matrix multiplication is one of the most studied fundamental problems in distributed and high performance computing. We obtain a new parallel algorithm that is based on Strassen's fast matrix multiplication and minimizes communication. The algorithm outperforms all known parallel matrix multiplication algorithms, classical and Strassen-based, both asymptotically and in practice. A critical bottleneck in parallelizing Strassen's algorithm is the communication between the processors. Ballard, Demmel, Holtz, and Schwartz (SPAA'11) prove lower bounds on these communication costs, using expansion properties of the underlying computation graph. Our algorithm matches these lower bounds, and so is communication-optimal. It exhibits perfect strong scaling within the maximum possible range. Benchmarking our implementation on a Cray XT4, we obtain speedups over classical and Strassen-based algorithms ranging from 24% to 184% for a fixed matrix dimension n=94080, where the number of nodes ranges from 49 to 7203. Our parallelization approach generalizes to other fast matrix multiplication algorithms.Comment: 13 pages, 3 figure
    corecore